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The effect of radiative heat-loss function and finite ion Larmor radius (FLR) corrections on thermal instability of infinite 
homogeneous viscous plasma has been investigated incorporating the effects of thermal conductivity, finite electrical 
resistivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal 
mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave 
propagation along and perpendicular to the direction of magnetic field has been discussed. Stability of the medium is 
discussed by applying Routh Hurwitz’s criterion. We find that the presence of FLR corrections, radiative heat-loss 
function and thermal conductivity modifies the fundamental criterion of thermal instability. Numerical calculations have 
been performed to show the effect of various parameters on the growth rate of the thermal instability. From the curves 
we find that heat-loss function and FLR corrections have stabilizing effect on the growth rate of thermal instability. Our 
results are applicable in understanding the star formation in galaxies.  
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——————————      —————————— 
 
1. INTRODUCTION  

Thermal instability is one of the most interesting phenomenon in the interstellar medium 
(ISM) for star formation. When a positive temperature perturbation is made in a thermal 
unstable medium, the perturbation grows and the emission rate decreases. This process is 
thought to be possible in a number of astrophysical situations such as the gas in clusters of 
the galaxies, in the solar corona and in the interstellar medium. What is less clear is the 
relative importance of this process in various circumstances. Thermal instability has many 
applications in astrophysical situations (e.g. a clumpy interstellar medium, stellar 
atmosphere, star formation, globular clusters and galaxy formation and many more situations 
Meerson 1966). The instability may be driven by radiative cooling of optically thin gas 
system or by exothermic nuclear reactions (Schwarzschild & Harm 1965). 

 Linear stability theory for a dilute gas medium with volumetric sources and sink of energy in 
thermal equilibrium was developed by Field (1965); he identified three unstable modes, the 
isobaric mode (the pressure driven formation of condensations not involving gravitation) and the 
two isentropic modes (the overstability of acoustic wave propagation in opposite directions). 
Hunter (1970, 1971) extended these results to an arbitrary non-stationary background flows, 
showing that cooling dominates media are potentially more unstable then that in equilibrium, 
while heating provides stabilization. The most common applications of thermal instability to 
interstellar medium and star formation deal with the isobaric mode that was employed to explain 
the observed multi phase structure of the interstellar medium (Field 1965, Pikel’ner 1968, 
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Goldsmith & Habing1969, Wolfircetal 1995). In this direction Aggarwal and Talwar (1969) have 
discussed magneto-thermal instability in a rotating gravitating fluid.   Sharm & Prakash (1975) 
have investigated radiative transfer and collisional effects on thermal convective instability of a 
composit medium. McCray & Stien (1975) have carried out the investigation of thermal 
instability in supernova shell. Nusel (1986) has discussed the thermal instability in cooling flows. 
Panavano (1988) has studied self regulating star formation in isolated galaxies: thermal 
instability in the interstellar medium. Iabnez & Sancher (1992) have studied the propagation of 
sound and thermal waves in plasma with solar abundance. Bora and Talwar (1993) have 
investigated the magneto-thermal instability with finite electrical resistivity and Hall current, 
both for self-gravitating and non-gravitation configurations. Prajapati et al. (2010) have 
discussed the effect of radiative heat-loss function and thermal conductivity on gravitational 
instability of fully ionized plasma with electron inertia, Hall current, rotation and viscosity. 
Szunzkiewicz & Millar (1997) have investigated the thermal stability of transonic accretion 
discs.  Najad-Asghar & Ghanbari (2003) have carried out linear thermal instability and formation 
of clumpy gas clouds including the ambipolar diffusion. Vasiliev (2012) has investigated the 
thermal instability in a collisionaly cooled gas. Najad-Asghar (2007) has investigated the 
formation of fluctuations in a molecular slab via isobaric thermal instability. Stiele et al. (2006) 
have carried out the problem of thermal instability in a weakly ionized plasma. Nipotic (2010) 
has investigated thermal instability in rotating galactic coronae. Hobbs et al. (2012) have 
discussed thermal instability in cooling galactic fuelling star formation in galactic discs. Nipoti & 
Posti (2013) have investigated thermal instability of a weakly magnetized rotating plasma. 
Choudhary & Sharma (2016) have discussed cold gas in clusture core: global stability analysis 
and non linear simulations of thermal instability.           

Along with this in above discussed problems the effect of finite ion Larmor radius is not 
considered. In many astrophysical situations such as in interstellar and interplanetary plasmas the 
approximation of zero Larmor radiuses is not valid. Several authors Rosenbluth et al. (1962), 
Roberts and Taylor (1962), Jeffery and Taniuti (1966), Vandakurov (1964) have pointed out the 
importance of finite ion Larmor radius (FLR) effects in the form of magnetic viscosity, on the 
plasma instability. Recently Ferraro (2007)   has shown the stabilizing effect of FLR on 
magneto-rotational instability. Marcu and Ballai (2007) have shown the stabilizing effect of FLR 
on thermosolutal stability of two-component rotating plasma. Sharma (1974) has shown the 
stabilizing effect of FLR on gravitational instability of rotating plasma. Bhatia and Chhonkar 
(1985) have investigated the stabilizing effect of FLR on the instability of a rotating layer of self-
gravitating plasma. Herrnegger (1972) has studied the effects of collision and gyroviscosity on 
gravitational instability in a two-component plasma and concluded that the critical wave number 
becomes smaller with increasing gyroviscosity for finite Alfven numbers and showed that Jeans 
criterion is changed by FLR for wave propagating perpendicular to magnetic field. Vaghela and 
Chhajlani (1989) have investigated the stabilizing effect of FLR on magneto-thermal stability of 
resistive plasma through porous medium with thermal conduction. Thus FLR effect is an 
important factor in discussion of thermal instability and other hydrodynamic instability.   
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In the light of above work, we find that Bora and Talwar (1993) have considered the 
effect of finite electrical resistivity, electron inertia, Hall current, thermal conductivity and 
radiative heat-loss function, but they neglect the effect of FLR corrections, viscosity,   and 
permeability on thermal instability. Vaghela and Chhajlani (1989) have considered the effect of 
finite electrical resistivity, viscosity, permeability and thermal conductivity, but they neglect the 
effect of radiative heat-loss function on thermal instability. Aggarwal and Talwar (1969) have 
considered the effect of viscosity, rotation, finite electrical resistivity, thermal conductivity and 
radiative heat-loss function, but they neglect the effect of FLR corrections, on thermal instability. 
Thus we find that in these studies, Aggarwal and Talwar (1969) and Bora and Talwar (1993), the 
joint influence of, permeability, FLR corrections, radiative heat-loss function, viscosity, 
electrical resistivity, thermal conductivity and magnetic field on the thermal instability is not 
investigated. Therefore in the present work thermal instability of magnetized plasma with FLR 
corrections, radiative heat-loss function, viscosity, thermal conductivity and finite electrical 
resistivity for the configuration is studied. The stability of the system is discussed by applying 
Routh-Hurwitz criterion. The above work is applicable to dense molecular clouds and star 
formation in interstellar medium. 
 
2. BASIC EQUATIONS OF THE PROBLEM  
  We assume an infinite homogeneous, magnetized, thermally conducting, radiating, 
viscous plasma having (FLR) corrections in the presence of magnetic field B  (0, 0, B). The 
MHD equations of the problem with these effects are written as 
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where P  is the pressure tensor stands for finite ion gyration radius as given by Robert and Taylor 
(1962) is 
 

 

0 0

0

0 0

v vv v, ,

v v0, ,

v v v v2 , 2 .

y yx x

xx yy

x

zz xy yx

y z z x

xz zx yz zy

P P
x y x y

P P P
x y

P P P P
z y x z

ρυ ρυ

ρυ

ρυ ρυ

   ∂ ∂∂ ∂
= − + = +   ∂ ∂ ∂ ∂   

 ∂ ∂
= = = − ∂ ∂ 

 ∂ ∂ ∂ ∂ = = − + = = +   ∂ ∂ ∂ ∂  

                               (7) 

 
The parameter 0υ has the dimensions of the kinematics viscosity and called as magnetic viscosity 

defined as 42
0 LL RΩυ = , where LR is the ion-Larmor radius and LΩ is the ion gyration 

frequency. Also p, ρ,υ , T, λ , R, and γ  denote the fluid  pressure, density, kinematic viscosity, 
temperature, thermal conductivity, gas constant and ratio of two specific heats respectively. L(ρ, 
T) is the radiative heat-loss function and depends on local values of density and temperature of 
the fluid. The convective derivative operator is given as   
 

 ( ).
t

d
dt

= ∂ + v ∇ ,                                                                       (8) 

 
where t∂  stands for t∂∂ / . 
 
3. LINEARIZED PERTURBATION EQUATIONS 
 The perturbation in fluid velocity, magnetic field, density, pressure, temperature and 
heat-loss function is given as u(ux, uy, uz), h(hx, hy, hz), δρ, δp, δT and L  respectively. The 
linearized perturbation equations for such medium are  
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 ( ) ,∂ = × ×δB v B∇                               (13) 

   
 . 0,=δB∇                         (14) 
 
where TL , ρL  are the partial derivatives of temperature dependent heat-loss function ( )ρTL ∂∂  

and density dependent heat-loss function ( )TL ρ∂∂  respectively.  
 We assume that all the perturbed quantities vary as  
 
   exp ( )zkxkti zx ++σ ,                        (15) 
 
where σ is the frequency of harmonic disturbance, xk and zk are the wave numbers of the 
perturbations along x and z axes.  
The components of equation (13) may be given as 
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where σω i= and 21)( ργ pc = is the adiabatic velocity of sound in the medium. The parameter 
A and B are given as  
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Using equations (13)-(19) in equation (10) with equation (8), we may write the following 
algebraic equations for the components of equation (10) 
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Taking divergence of equation (10) and using equations (13) to (19), we obtain as 
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where ρδρ=s  is the condensation of the medium.  
 To obtain the dispersion relation, we have made following substitutions in above equations  
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4.  DISPERSION RELATION 
 The nontrivial solution of the determinant of the matrix obtained from equations (21) - 
(24) with

x
v ,

y
v ,

z
v , s  having various coefficients should vanish to give the following dispersion 
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 The dispersion relation (26) represents the simultaneous inclusion of radiative heat-loss 
function, FLR corrections, thermal conductivity, finite electrical resistivity, viscosity,  and 
magnetic field on thermal instability of plasma. In absence of radiative heat-loss function the 
general dispersion relation (26) is identical to that of Vaghela and Chhajlani (1989). On 
neglecting the effect of thermal conductivity and radiative heat-loss function dispersion relation 
(26) is identical to Sanghvi and Chhajlani (1986). In absence of radiative heat-loss function, 
thermal conductivity, finite electrical resistivity and viscosity the general dispersion relation (26) 
is identical to Sharma (1974) for non-rotational case. In absence of FLR corrections, viscosity 
and   dispersion relation (26) is identical to Bora and Talwar (1993) neglecting Hall current and 
electron inertia in that case. Also in absence of FLR corrections, viscosity, finite conductivity 
and   dispersion relation (26) reduces to that obtained by Field (1965) for non-gravitating 
medium. Now we discuss the general dispersion relation (26) for longitudinal and transverse 
wave propagation. 
 
5.  ANALYSIS OF THE DISPERSION RELATION  
5.1   LONGITUDINAL MODE OF PROPAGATION (k||B) 
  In this case the perturbations are taken parallel to the direction of the magnetic field

),0..( kkkei zx == . The dispersion relation (26) reduces to  
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 This dispersion relation represents the combined effect of, , viscosity, magnetic field 
strength, thermal conductivity, radiative heat-loss function and FLR corrections on thermal 
instability of plasma. On comparing this dispersion relation (27) with dispersion relation (20) of 
Vaghela and Chhajlani (1989) we find that two factors are the same but the third factor is 
different and gets modified because of radiative heat-loss function. Also on multiplying all the 
components of equation (27) we get the dispersion relation, which is an equation of degree eight 
in ω  and it is cumbersome to write such a lengthy equation. If we remove the effect of FLR 
corrections and viscosity in the above relation then we recover the relation given by Bora and 
Talwar (1993) excluding Hall current and electron inertia in their case. Hence the above 
dispersion relation is the modified form of equation (21) of Bora and Talwar (1993) due to the 
inclusion of, FLR corrections and viscosity, in our case and by neglecting Hall current and 
electron inertia in their case for longitudinal propagation in dimensional form. In present case we 
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have considered the effects of, FLR corrections and viscosity, but Bora and Talwar (1993) have 
not considered these effects. Thus the dispersion relation in the present analysis is modified due 
to the presence of, FLR  corrections and viscosity, but condition of instability is unaffected by 
the presence of FLR corrections, viscosity, and . Thus we conclude that the, FLR corrections and 
viscosity of the medium have no effect on the condition of instability. Also it is clear that the 
growth rate of dispersion relation given by Bora and Talwar (1993) gets modified due to the 
presence of FLR corrections and viscosity in the present case. Thus we conclude that medium, , 
FLR corrections and viscosity, modify the growth rate of instability in the present case. Hence 
these are the new findings in our case than that of Bora and Talwar (1993). 
 The dispersion relation (27) has three different components and we discuss each component 
separately. The first component of the dispersion relation (27) gives   
 
  2 0kω υ+ = .                         (28) 
 
 This represents a stable damped mode modified by the presence of viscosity,   and  of the 
medium. Thus viscous is capable to stabilize the growth rate of the considered system. The 
above mode is unaffected by the presence of FLR corrections, magnetic field strength, thermal 
conductivity and radiative heat-loss function. This dispersion relation is identical to Vaghela and 
Chhajlani (1989).  
 The second factor of equation (27) on simplification gives 
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  }2 2 4 2 2
0

8 0.k k V kη υ ω+ + =              (29) 

  
 The above dispersion relation shows the viscous magnetized medium having finite electrical 
resistivity,  and FLR corrections. This dispersion relation is identical to Vaghela and Chhajlani 
(1989). The above relation is independent of thermal conductivity and radiative heat-loss 
functions. Equation (29) is a four degree equation in power of ω  having its all coefficients 
positive which is a necessary condition for the stability of the system. To achieve the sufficient 
condition the principal diagonal minors of Hurwitz matrix must be positive. On calculating we 
get all the principal diagonal minors positive. Hence equation (29) always represents stability. 
   
 For inviscid, infinitely conducting medium in absence of FLR corrections    

0
( 0 )υ υ= =  

equation (29) becomes  
 
  .0222 =+ kVω                                      (30) 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                   665 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

This represents the pure Alfven mode. 
 For inviscid medium ( 0 )υ =  equation (29) becomes  
 
  24 2 2 2 4 2 4 4

0
2( 2 ) 0.V k k V kω υ ω+ + + =                                  (31) 

 
The roots of equation (31) are 
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.                              (32) 

 
Hence FLR corrections modify the Alfven mode by changing the growth rate of the system. 
Equations (31) and (32) are the modified form of Vaghela and Chhajlani (1989) by medium. 
 
 The third component of the dispersion relation (27) on simplifying gives 
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λω γ ρ
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                                                             (33) 

 This dispersion relation (33) represents the combined influence of, , radiative heat-loss 
function, thermal conductivity and viscosity on the thermal instability of plasma. But there is no 
effect of FLR corrections, finite electrical resistivity and magnetic field on the thermal instability 
of the considered system. In absence of radiative heat-loss function the above relation (33) is 
identical to Vaghela and Chhajlani (1989). If the constant term of cubic equation (33) is less than 
zero this allows at least one positive real root which corresponds to the instability of the system. 
The condition of instability obtained from constant term of equation (33) is given as 
 

  
2

2 ( 1) 0.T
k Tk TL Lρ

λγ ρ
ρ

   − − + <  
   

                                 (34) 

 
 The medium is unstable for wave number 1Jkk < . Here it may be noted that the modified 
critical wave number involves the derivatives of temperature dependent, density dependent heat-
loss function and thermal conductivity of the medium. 21)( ρpc =′  is the isothermal velocity of 
sound in the medium. In absence of  and viscosity, equation (33) is identical to Field (1965), as 
the viscosity and  of the medium have no effect on the condition of instability. It is clear that the 
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growth rate of the dispersion relation given by Field (1965) is getting modified due to the 
presence of viscosity and  in our present case. Hence these are the new findings in our case than 
that of Field (1965).  

Figure 1 shows the effect of *kλ  on the growth rate of thermal instability for fixed values 

of other parameters. From curves it is clear that as the value of *kλ increases both the peak value 

and the growth rate of thermal instability decreases. Thus the parameter *kλ moves the present 
system towards the stabilization. In Fig. 2 we have plotted the growth rate of thermal instability 
against wave number for different values of the parameter *

Tk . From figure we conclude that as 

the value of *
Tk  increase, the peak value of curves decreases and the area of growth rate also 

decrease. Hence, the presence of *
Tk  also stabilizes the system. In Fig. 3 we have shown the 

effect of viscosity on the growth rate of thermal instability. Figure displays that on increasing the 
value of viscosity the growth rate of thermal instability decreases. Therefore, the parameters *kλ , 

*
Tk  and *ν  viscosity stabilize the system. 

 To discuss the effect of each parameter on the growth rate of thermal instability we solve 
equation (33) numerically by introducing the following dimensionless quantities 

To study the effects of viscosity, and radiative heat-loss functions on the growth rate of 
thermal instability, we solve Eq. (33) numerically. Therefore Eq. (33) can be written in non-
dimensional form with the help of following dimensionless quantities 

 

* * * * *, , , , .T
T

s s

k k kkk k k
k c c k k k

ρ ρ
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ρ ρ λ ρ

υωω υ= = = = =
                                                    

(35) 

 
Using Eq. (35), we write Eq. (33) in non-dimensional form as 

 

          
( ) ( )
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*3 * *2 * * *2 *2 2 * *2 * * *2 *2 * * * *21 0.T s T T
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(36) 
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Fig. 1: The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for 
different values of  *v  with *

Tk  = 0.5 and * *
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 Fig. 2: The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for 
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Tk  with *kλ  = 0.01 and * *
1K υ= = 1.0 
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Fig. 3: The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for 
different values of  *kλ  with *

Tk  = 0.5 and * *
1K υ= = 1.0. 
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 To discuss the stability of the system given by equation (33), if constant term of cubic 
equation (33) is greater than zero, then all the coefficients of the equation (33) must be positive. 
Equation (33) is a third degree equation in the power of ω  having its coefficients positive, which 
is a necessary condition for the stability of the system. To achieve the sufficient condition the 
principal diagonal minors of Hurwitz matrix must be positive. The principal diagonal minors are 

  
2

2
1

( 1) 0,T
T L k Tk

p p

ρ λ∆ υ γ
    = + − + >     

 

   

  ( )
2

2 2 2 2
2 1( 1) 1 0,TT L k Tk c k k L

p p ρ
ρ λ∆ υ ∆ γ γ ρ

  
= − + + + − >  

   
                        (37) 

   

  
2

2
3 2 ( 1) 0.T

k Tk TL Lρ
λ∆ ∆ γ ρ
ρ

   = − − + >  
   

 

 
If 0,0 22 >> Ij ΩΩ and 1>γ , then it is clear that all the s∆ are positive hence system represented 

by equation (33) is stable system. 
 
 
 For viscous, radiating and thermally non-conducting medium      )0,0( , =≠= λυ ρTL  

equation (33) becomes 

  3 2 2 2 2 2T T

p p

L Lk k c k
c c
γ γω υ ω υ ω

      + + + +   
      

2 2 0.T

p T

pLL k c
c TL

ργ    ′+ − =  
   

                  (38) 

 
 The condition of instability from constant term of equation (38) is  
 

  2 2 0,
T

pL
k c

TL
ρ   ′ − <  

   
              (39) 

  
 Thus we conclude that for longitudinal wave propagation as given by equation (27) the 
system is unstable only for Jeans condition, else it is stable.  Also for longitudinal wave 
propagation the Jeans criterion remains unaffected by FLR corrections, viscosity, magnetic field, 
finite electrical resistivity and , but thermal conductivity and radiative heat-loss function modify 
the Jeans expression and the fundamental Jeans instability criterion becomes radiative instability 
criterion. 
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5.2 TRANSVERSE MODE OF PROPAGATION (k⊥B) 
 In this case the perturbations are taken perpendicular to the direction of the magnetic field

)0,..( == zx kkkei . The dispersion relation (26) reduces to  
 

  { } { }
2

2 2
2 2 2 2 V kk k k ωω υ ω υ ω ωυ

ω
 

+ + + +


 
2 2

2 2 4
0

0.j I k
B

ωΩ Ω
ω υ

ω

+  + + = +  

                 (40) 

 
 This dispersion relation (40) is modified due to the presence of , radiative heat-loss function, 
FLR corrections, thermal conductivity, viscosity, finite electrical resistivity and magnetic field. 
The dispersion relation (40) has two different components. The first component of the dispersion 
relation (40) represents a stable viscous mode modified by the presence of  of the medium as 
discussed in equation (28). 
 The second component of the dispersion relation (40) on simplifying gives 

     

     [{
2 2

4 2 3 22 ( 1) 2 ( 1)T T
T L T Lk T k Tk k

p p p p

ρ ρλ λω υ γ ω υ γ
          + + − + + − +          

                         

      

     }2 2 2

2
2 4 2 2 2 4 2 2 2 2 2 4

0 0
( 1) T

T L k Tk V k k c k k k
p p

ρ λυ υ ω γ υ υ
      + + + + + − + +         

     

           

     
2 2

2 2 2 2 2 2 2( 1) ( 1)T
T

T L k T k TV k k c k k k TL L
p p ρ
ρ λ λυ γ υ γ ρ ω

ρ

        + + − + + + − − +                  
 

 

  2

2 2
2 2 2( 1) ( 1) 0.T

T

T L k T k TV k k TL L
p p ρ

ρ λ λγ γ ρ
ρ

      + − + + − − + =         

                       (41) 

 
The above dispersion relation represents the combined influence of thermal conductivity, 
radiative heat-loss function, FLR corrections, finite electrical conductivity, viscosity,  and 
magnetic field on thermal instability of plasma through porous medium. In absence of radiative 
heat-loss function equation (41) is identical to Vaghela and Chhajlani (1989). When constant 
term of equation (41) is less than zero this allows at least one positive real root which 
corresponds to the instability of the system. The condition of instability obtained from constant 
term of equation (41) is given as 
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2 2

2 2 2( 1) ( 1) 0.T
T

T L k T k TV k k TL L
p p ρ
ρ λ λγ γ ρ

ρ
     − + + − − + <    
     

                  (42) 

 
 Thus to discuss the effect of each parameter (viz. heat-loss function, viscosity,  and FLR 
corrections) on the growth rate of unstable modes, we solve equation (41) numerically by 
introducing the following dimensionless quantities 
 

0* * * * * *
0, , , , , .T

T
s s s

k k kkkk k k
k c c k k k c

ρ ρ ρ
λ

ρ ρ λ ρ

υ υωω υ υ= = = = = =
                              

(43) 

 
Using Eq. (43), we write Eq. (41) in non-dimensional form as 
 

 { } { }2*4 * *2 * * *2 *3 * *2 * * *2 *2 *4 *2 *2 *2 *4 *2 *2 *2
0
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T T

k k k k k k k k k V k k c k
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ω υ ω υ υ υ ω+ + + + + + + + +  
                         

   

  { *2

*2 *2 * *

1
* * *2 * *2 *2 *4 *2 *2 * *2 * * *2 *2 * * *2

0T T T

kk k k k k V k k k k k c k k k k k
λ λ λ

υ υ υ υ ω
γ

−+ + +
       + + + + + +              

 

 

  
*2

*2 *2 * * *2 * * *2 1 0.
T T

kV k k k k k k k
λ λγ

     + + + + − =        
                                                          (41) 

In Figs. 4-8 the dimensionless growth rate ( *ω ) has been plotted against the dimensionless wave 
number ( *k ) to see the effect of various physical parameters such as viscosity, radiative heat-loss 
function and FLR corrections. It is clear from Fig. 4 that growth rate decreases with increasing 
the value of viscosity. Thus the effect of viscosity is stabilizing. From Fig. 5 we see that as the 
value of *kλ increases the growth rate decreases. Thus the effect of parameter *kλ is also 
stabilizing.  
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Fig. 4: The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for 
different values of *ν  with *

Tk  = 0.3 and *kλ =0.2, * *
1 0K υ= = 1.0. 
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Fig. 5: The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for 
different values of *kλ  with *

Tk  = 0.5 and * * *
1 0K υ ν= = = 1.0. 
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Tk   with *kλ  = 0.2 and * * *
1 0K υ ν= = = = 1.0. 
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Fig. 7: The normalized growth rate ( *ω ) as a function of normalized wave number ( *k ) for 
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 From Fig. 6 we conclude that growth rate decreases with increasing parameter *

Tk .Thus the 

presence of *
Tk stabilizes the growth rate of the system. Figure 7 displays the influence of FLR 

corrections on the growth rate of thermal instability. From figure it is clear that the FLR 
correction has a stabilizing effect on the growth rate of thermal instability. Therefore, the 
parameters viscosity, radiative heat-loss functions and FLR corrections have stabilizing influence 
on the system. 
 
 For non-viscous, radiating, thermally conducting, magnetized, finitely conducting, medium 
with FLR corrections ( ,0=υ  

, 0
0

T
L V

ρ
λ υ= = = ≠ ) equation (41) becomes  
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2 2 4
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2
3 2 2 2 2 4 2 2
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( 1) ( 1) TT

T L k T T L k TV k k c k k
p p p p
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         + − + + + + + − +              

 

 
2

2 2 ( 1) TT L k TV k
p p
ρ λγ

 
+ − + 

 

2
2 ( 1) 0.T

k Tk TL Lρ
λγ ρ
ρ

   + − − + =   
    

                       (45) 

 
The above equation is modified form of Vaghela and Chhajlani (1989) by inclusion of radiative 
heat-loss function. When constant term of equation (45) is less than zero this allows at least one 
positive real root which corresponds to the instability of the system. The condition of instability 
obtained from constant term of equation (45) is given as 
 

  
2

2 0.T
k Tk TL Lρ

λρ
ρ

   − + <  
   

                                                                                 (46) 

 
 From the above condition of instability given by equation (46) we conclude that FLR 
corrections try to stabilize the system. Also on comparing equations (41) and (46) we see that 
inclusion of viscosity removes the effects of FLR corrections and medium   from condition of 
instability. So in both the cases either the system is viscous or non-viscous, FLR corrections and   
stabilizes the growth rate of thermal instability.  
 For inviscid, thermally non-conducting, radiating, magnetized, finitely conducting, medium 
with FLR corrections ,0( == λυ

, 0

0)
T

L V
ρ

υ= = ≠  equation (41) becomes 

  ( ) {3 2 2 2 2 4 2 2 2 4 2 2
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p p p

L L LV k k c k k V k
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           2 2 0.T
p

pL
k c L

c T
ργ ω

   ′+ − =  
   

                         (47) 

 
When constant term of equation (47) is less than zero this allows at least one positive real root 
which corresponds to the instability of the system. The condition of instability obtained from 
constant term of equation (47) is given as 
   

  2 2 0,
T

pL
k c

TL
ρ   ′ − <  

   
                                                   (48) 

 
or critical Jeans wave number is given as 
 
 For inviscid, infinitely conducting, radiating, thermally conducting, magnetized, medium 
with FLR corrections ( 0,υ =  00, ≠=== υλρ VLT ) equation (41) becomes  

  }{ ( ){
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0 0( 1) ( 1)TT L k T V k k c k k V k

p p
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T L k T k Tk TL L
p p ρ
ρ λ λγ ρ

ρ
   + + + − − + =   
   

                                            (49) 

When constant term of equation (49) is less than zero this allows at least one positive real root 
which corresponds to the instability of the system. The condition of instability obtained from 
constant term of equation (49) is given as 
 

 

  ( )
2 2

2 4 2 2 2
0 0.T

T
T L k T k Tk V k k TL L

p p ρ
ρ λ λυ ρ

ρ

     + + + − + <    
     

                                         (50) 

 
 
 The above condition of instability (50) is the modified form of equation (41) of Prajapati et 
al. (2010) by   and FLR corrections, excluding electron inertia in their case.  From the condition 
of instability given by equation (50) we conclude that, FLR corrections and magnetic field try to 
stabilize the system. Also on comparing equations (41) and (49) we see that inclusion of 
viscosity remove the effect of FLR corrections,   and magnetic field from condition of instability. 
So in both the cases whether the system is viscous or non-viscous FLR corrections stabilize the 
growth rate of thermal instability.  
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 Thus we conclude that FLR corrections, heat-loss function, thermal conductivity, magnetic 
field strength and viscosity have stabilizing influence on the growth rate of thermal instability,  
 
6.  CONCLUSION 
  In the present problem we have studied the effects of  FLR corrections on the thermal 
instability of infinite homogeneous viscous plasma with thermal conductivity, radiative heat-loss 
function, . The general dispersion relation is obtained which is modified due to the presence of 
considered physical parameters and is discussed for longitudinal and transverse mode of 
propagation to the direction of magnetic field. We find that the fundamental criterion of thermal 
instability regarding the size of initial break up is considerably modified due to radiative heat-
loss function, and FLR corrections. The effect of heat-loss function parameters is found to 
stabilize the system in both the longitudinal mode and transverse mode of propagation. 
 In the case of longitudinal mode of propagation, we find Alfven mode modified by the 
presence of , FLR corrections and viscosity. The thermal mode is obtained separately which is 
modified by the presence of , radiative heat-loss function, thermal conductivity and viscosity. 
The condition of thermal instability is unaffected by the presence FLR corrections,  and 
viscosity. From the curves we find that the heat-loss function has a stabilizing role on the growth 
rate of the system in longitudinal mode of propagation. 
 In the case of transverse mode of propagation, we obtain a thermal mode modified by the 
presence of , FLR corrections, radiative heat-loss function, thermal conductivity and viscosity. 
We find that the condition of instability is independent of FLR corrections and viscosity, and 
depends only on thermal conductivity and radiative heat-loss function. But the growth rate is 
affected by the presence of all the considered parameters. For the case of inviscid and thermally 
non-conducting medium it is found that the condition of instability modified due to the presence 
of FLR corrections and radiative heat-loss function. It is observed that for an inviscid medium 
the condition of instability is modified due to the presence of FLR corrections, magnetic field, 
thermal conductivity and radiative heat-loss function, and it is independent of  and viscosity. 
From the curves we find that the heat-loss function has stabilizing effect on the growth rate of 
thermal instability. Also it is interesting to see that in both the cases the peak value of the curves 
decreases on increasing heat-loss function this means that the system becomes more stable on 
increasing the value of heat-loss function. The effect of FLR corrections is to stabilize the 
system. 

When the cloud density reaches critical value, the cloud fragments into cool dense 
condensations via thermal instability. When the critical density increase as metallicity decrease, 
and also as radiation increase. Condensations collide with each other and self-gravitating clumps 
will be produced when the mean cloud density becomes sufficiently high; then stars will form. 
Expansion of the H II region around the massive star and supernova explosions will blow off 
surrounding gas and end star formation process. When the mean density at the time of star 
formation is high, high virial velocity prevents expansion of the H II region. Also, in such high-
density environments, the star formation timescale is shorter than the lifetime of a massive star. 
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Then the gas in cluster-forming region will be converted into stars efficiently, before the gas is 
detached by expanding H II region or supernova explosions. High density is realized in the 
contracting low-metallicity gas, and if the formation of a contracting gas cloud is possible, a 
strong-radiation environment is another candidate. Thus, it is suggested that high star formation 
efficiency and bound cluster formation are expected achieved in low-metallicity and/or strong-
radiation environments. Such environments exist in dwarf galaxies, the early stage of our Galaxy 
and starburst galaxies. 
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